Homotopy perturbation method: a versatile tool to evaluate linear and nonlinear fuzzy Volterra integral equations of the second kind.

نویسندگان

  • S Narayanamoorthy
  • S P Sathiyapriya
چکیده

In this article, we focus on linear and nonlinear fuzzy Volterra integral equations of the second kind and we propose a numerical scheme using homotopy perturbation method (HPM) to obtain fuzzy approximate solutions to them. To facilitate the benefits of this proposal, an algorithmic form of the HPM is also designed to handle the same. In order to illustrate the potentiality of the approach, two test problems are offered and the obtained numerical results are compared with the existing exact solutions and are depicted in terms of plots to reveal its precision and reliability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy approximation technique for solving nonlinear‎ ‎Volterra-Fredholm integral equations of the first kind

In this paper, a nonlinear Volterra-Fredholm integral equation of the first kind is solved by using the homotopy analysis method (HAM). In this case, the first kind integral equation can be reduced to the second kind integral equation which can be solved by HAM. The approximate solution of this equation is calculated in the form of a series which its components are computed easily. The accuracy...

متن کامل

A HOMOTOPY PERTURBATION ALGORITHM AND TAYLOR SERIES EXPANSION METHOD TO SOLVE A SYSTEM OF SECOND KIND FREDHOLM INTEGRAL EQUATIONS

In this paper, we will compare a Homotopy perturbation algorithm and Taylor series expansin method for a system of second kind Fredholm integral equations. An application of He’s homotopy perturbation method is applied to solve the system of Fredholm integral equations. Taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.

متن کامل

The solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space

In this paper, to solve a linear one-dimensional Volterra  integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of  integral equation in terms of the basis functions. The examples presented in this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SpringerPlus

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016